
kingcobra64-github-code
Documentation

Release latest

Apr 28, 2023

CONTENTS

1 1095. KingCobra messaging request-response design - options 3

2 1300a.(DONE) KingCobra - VIRGO queue - VIRGO cpupooling , mempooling and queue service drivers
interaction schematic diagram: 5

3 784.1 Schematic Diagram for Cloud Perfect Forwarding with As-
Fer+VIRGOQueue+KingCobraUserspace: 7

4 References: 9

5 References: 11
5.1 787. (THEORY - this section is an extended draft on respective topics in Neuron-

Rain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-
docs/AstroInferDesign.txt) Buyer-Seller and MAC electronic money transaction schematic: 12

6 1099. (THEORY) MAC protocol reaper 13

7 1100. (THEORY) Cloud Policing With Arbiters - Revisited: 15
7.1 788. (THEORY) MAC Money Flow as MaxFlow problem - this section is an extended draft on

respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt . 15

8 1101. (THEORY) Cycles and components in above MAC Money Flow Graph: 17

9 1102. (THEORY) STOCK TRADING: 19
9.1 789. (THEORY) Analysis of Poverty and Alleviation through above money flow graph -

this section is an extended draft on respective topics in NeuronRain AstroInfer Design -
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt . . . 19

10 References: 21
10.1 790.(THEORY) Demand and Supply and Value() function - Quantitative Majority Circuit -

this section is an extended draft on respective topics in NeuronRain AstroInfer Design -
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt . . . 21

11 References: 23
11.1 791.(THEORY) Hidden or Colored Money - this section is an extended draft on respec-

tive topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt . 23

12 References: 25
12.1 1103. Commits as on 1 March 2014 . 25

i

13 Example java Publisher and Listeners that use ActiveMQ as the messaging middleware have been com-
mitted to repository for an ActiveMQ queue instance created for KingCobra. For multiple clients this
might have to be a Topic rather than Queue instance. Request types above and a workflow framework
can be added on this. This will be a JMS compliant implementation which might slow down compared
to a linux workqueue or queue implementation being done in VIRGO. 27

14 1104. Commits as on 17 March 2014 29
14.1 1105. Commits as on 22 March 2014 . 29
14.2 1106. Commits as on 29 March 2014 . 29
14.3 1107. Commits as on 30 March 2014 . 29
14.4 1108. Commits as on 6 April 2014 . 30
14.5 1109. Commits as on 7 April 2014 . 30
14.6 1110. Commits as on 29 April 2014 . 30
14.7 1111. Commits as on 26 August 2014 . 30
14.8 1112. Commits as on 17 August 2015 . 30
14.9 1113. Commits as on 14 October 2015 . 30
14.10 1114. Commits as on 15 October 2015 . 31
14.11 1115. Commits as on 10 January 2016 . 31

15 Commit comments: 33

16 Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue -> KingCobra 35
16.1 1117. Commits - KingCobra 64 bit and VIRGO Queue + KingCobra telnet requests - 17 April 2017 . 35
16.2 779. (FEATURE-DONE) Commits - CVXPY implementation for Eisenberg-Gale Convex Program -

18 August 2017 - - this section is an extended draft on respective topics in NeuronRain AstroInfer De-
sign - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt 36

16.3 780. (FEATURE-DONE - this section is an extended draft on respective topics in Neu-
ronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-
docs/AstroInferDesign.txt) Commits - Convex Optimization - DCCP - 21 August 2017 36

16.4 1118. (FEATURE-DONE) Commits - Convex Optimization - DCCP - 22 August 2017 37
16.5 1119. (FEATURE-DONE) Commits - Convex Optimization update - 29 August 2017 37
16.6 778. (FEATURE-DONE) Convex Optimization - Pricing Computation - 30 August 2017

- this section is an extended draft on respective topics in NeuronRain AstroInfer Design -
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt . . . 37

16.7 1120. (FEATURE-DONE) KingCobra Kernelspace Messaging Driver for 4.13.3 64-bit kernel - 24
September 2017 . 37

16.8 1121. (FEATURE-DONE) Commits - telnet - VIRGO64Queue - KingCobra64 - 25 September 2017 38
16.9 1122. (FEATURE-DONE) VIRGO64 Queueing Kernel Module Listener - KingCobra64 - 4.13.3 - 6

October 2017 . 38
16.10 777. (FEATURE-DONE) KingCobra64 Neuro Electronic Currency transactional cloud move - Per-

fect Forward - 17 January 2018 - this section is an extended draft on respective topics in Neu-
ronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-
docs/AstroInferDesign.txt . 38

16.11 776. (FEATURE) Concurrent Managed Workqueue(CMWQ), VIRGO64 Queueing and KingCobra64
messaging - 12 June 2019 - this section is an extended draft on respective IoT messaging and kernel
analytics topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt . 38

ii

16.12 1216. (THEORY and FEATURE) Algorithmic Trading in Fictitious Neuro Cryptocurrency - Event-
Net Graphical Event Model (GEM) HyperLedger implementation - 14 February 2022 - related to
690,789,790,791,1213,1214,1215 and all sections on Computational Economics - Theory of Value
(economic merit), Algorithmic trading, Quantitative Majority Circuit simulation of Demand-Supply,
Bounded Width Branching Programs, Algorithmic Game Theory and Mechanism Design, Money
Trail, Poverty Alleviation, Graphical Event Models and Causal Event Models, Timeseries analysis,
Integer Factorization and Money Changing Program ILP Proof of Work for Neuro Cryptocurrency,
Byzantine Fault Tolerance . 39

17 References: 41

iii

iv

kingcobra64-github-code Documentation, Release latest

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http:
//www.gnu.org/licenses/>.

#——————————————————————————————————-
#K.Srinivasan #NeuronRain Documentation and Licensing: http://neuronrain-documentation.
readthedocs.io/en/latest/ #Personal website(research): https://acadpdrafts.readthedocs.io/en/
latest/ #——————————————————————————————————–
***/

[This is a major research oriented subsystem of NeuronRain and inspired by COBRA project (done by the author in his
BE (1995-1999) along with few other esteemed classmates. http://sourceforge.net/projects/acadpdrafts/files/Excerpts_
Of_PSG_BE_FinalProject_COBRA_done_in_1999.pdf/download.)]

[KingCobra though a misnomer is expanded as ClOud With ARBiters MimicKING containing the anagram]

1072. (THEORY) There is a cloud of nodes which execute a set of services from randomly created clients.

1073. (THEORY) This cloud could be on NeuronRain (AsFer+USBmd+VIRGO+KingCobra) platform or any other
opensource cloud platforms like Hadoop Cluster.

1074. (THEORY) The Clients are publishers of Service requests which are of many types - miscellaneous types of
Service that could be dynamically added through other kernel modules and invoked through a switch-case or
embedded in function itself. Identified by unique id(s) for different types of services (for example Problem
reports, Suggestions etc.,)

1075. (THEORY) The Services on the Cloud are Subscribers to these requests of specific type. Thus this is the con-
ventional publisher-subscriber model.

1076. (THEORY) The requests flow through cloud using a workqueue (which could be a lowlevel Linux workqueue
or VIRGO queue or some other queuing middleware software like ActiveMQ). The publishers enqueue and
Subscribers dequeue the requests.

1077. (THEORY) The difference is that the Cloud has nodes that “deceive” or “corrupt”.

1078. (THEORY) Service requests - are published by the clients in the need of a service which could be defined by
markup file. These requests are scheduled and routed by the middleware to competent authority which services
it (with or without timeframe) and replies to the client.

1079. (THEORY) Problem reports - are published by clients which are “dissatisfied” by the quality of service by the
cloud. These are analyzed by “arbiters” in the cloud which find the faulting node(s) and take action. This allows
manual intervention but minimizes it.

1080. (THEORY) Suggestions - are enhancement requests sent by clients and require manual intervention.

1081. (THEORY) Cloud nodes have a Quality of Service metric calculated by a model.

1082. (THEORY) The cloud has a reporting structure of nodes - either as a graph or tree. The graph is dynamically
reorganized by weighting the Quality of Service of each node.

1083. (THEORY) The difficult part of the above is using Arbiters to find “faulty” nodes based on problem reports from
clients.

1084. (THEORY) Brewer’s CAP conjecture proved by [GilbertLynch] as a theorem (still debated) states that only 2 of
the 3 (Consistency of data, Avaliability of data and Partition tolerance when some nodes or messages are lost)
can be guaranteed and not all 3 are simultaneously achievable.

CONTENTS 1

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://neuronrain-documentation.readthedocs.io/en/latest/
http://neuronrain-documentation.readthedocs.io/en/latest/
https://acadpdrafts.readthedocs.io/en/latest/
https://acadpdrafts.readthedocs.io/en/latest/
http://sourceforge.net/projects/acadpdrafts/files/Excerpts_Of_PSG_BE_FinalProject_COBRA_done_in_1999.pdf/download
http://sourceforge.net/projects/acadpdrafts/files/Excerpts_Of_PSG_BE_FinalProject_COBRA_done_in_1999.pdf/download

kingcobra64-github-code Documentation, Release latest

1085. (THEORY) CAP theorem does not seem to apply to the above faulty scenario with corrupt nodes under Consis-
tency or Availablity or Partition Tolerance. This is because a corrupt node can have any 2 of the 3 - it can give
consistent data, is available with success response or can make the cloud work with missing data in partition
tolerance but yet can “corrupt” the cloud. Probably this needs to be defined as a new attribute called Integrity.

1086. (THEORY) As “corruption” is more conspicuous with monetary element, if above services are “charged” with
a logical currency (e.g. bitcoin), then corruption in cloud is defineable approximately as (but not limited to)-
“Undue favour or harm meted out to a client not commensurate with the charge for the service (or) unreasonable
extra logical currency demanded to execute the service of same quality (or) deliberate obstruction of justice to a
client with malevolent and unholy collusion with other cloud nodes with feigned CAP”.

1087. (THEORY) Identifying criminal nodes as in (15) above seems to be beyond the ambit of CAP. Thus CAP with
Integrity further places a theoretical limit on “pure” cloud. If Integrity is viewed as a Byzantine problem with
faulty or corrupt processes in a distributed system, and if resilience factor is rf (expected number of faulty nodes),
then most algorithms can ensure a “working” cloud only if resilience is ~30% or less (3*rf+1) of the total number
of cloud nodes. Probably this could apply to Integrity also that places a limit of 30% on “corrupt nodes” for
the Cloud to work with sanity. Translating this to a Governance problem, a corruption-free administration is
achievable with a maximum limit of 30% “corrupt” elements.

1088. (THEORY and FEATURE) Analytics on the Problem reports sent to the cloud queue give a pattern of cor-
rupt nodes. Intrinsic Merit ranking with Citation graph maxflow considering cloud as a flow network where a
node positively or negatively cites or “opines” about a node, as mentioned in http://arxiv.org/abs/1006.4458 (au-
thor’s Master’s thesis) and http://www.nist.gov/tac/publications/2010/participant.papers/CMI_IIT.proceedings.
pdf(published by the author during PhD) give a p2p ranking of cloud nodes that can be used for analysis though
may not be reliable fully. AsFer has bigdata analytics functionality that fits well to this point to analyse the prob-
lem reports with machine learning algorithms and set the key-value pairs that are read by VIRGO kernel_analytics
module and exported kernelwide. The persisted REQUEST_REPLY.queue with the logged request-reply IPs and
timestamps can be mined with AsFer bigdata capability (e.g. Spark)

1089. (THEORY) Policing the cloud nodes with arbiters - This seems to be limited by CAP theorem and Integrity
as above. Also this is reducible to perfect inference problem in http://sourceforge.net/p/asfer/code/HEAD/tree/
AstroInferDesign.txt and drafts in https://sites.google.com/site/kuja27/

1090. (THEORY) Brooks-Iyengar algorithm for sensors in all cloud nodes is an improved Byazantine Fault Tolerant
algorithm.

1091. (THEORY) BitCoin is a Byzantine Fault Tolerant protocol.

1092. (THEORY) Byzantine Fault Tolerance in Clouds is described in http://www.computer.org/csdl/proceedings/
cloud/2011/4460/00/4460a444-abs.html, http://www.eurecom.fr/~vukolic/ByzantineEmpire.pdf which is more
on Cloud of Clouds - Intercloud with cloud nodes that have malicious or corrupt software. Most of the key-
value(get/set) implementations do not have byzantine nodes (for example CAP without Byzantine nodes in Ama-
zon Dynamo: http://www.eurecom.fr/~michiard/teaching/slides/clouds/cap-dynamo.pdf)

1093. (THEORY) Related to point 18 - The problem of fact finding or fault finding using a cloud police has the same lim-
itation as the “perfect inference” described in http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.
txt. “Money trail” involving the suspect node in point 28 is important to conclude something about the corrup-
tion. In real world tracking money trail is a daunting task. In cloud that abides by CAP, missing messages on trail
can prevent reaching a conclusion thereby creating benefit-of-doubt. Also fixing exact value for a transaction
that involves MAC currency message is undecidable - a normative economics problem can never be solved by
exact theoretical computer science.

1094. (THEORY) Reference article on cloud BFT for Byzantine, Corrupt brokers - Byzantine Fault-Tolerant Pub-
lish/Subscribe: A Cloud Computing Infrastructure (www.ux.uis.no/~meling/papers/2012-bftps-srdsw.pdf)

2 CONTENTS

http://arxiv.org/abs/1006.4458
http://www.nist.gov/tac/publications/2010/participant.papers/CMI_IIT.proceedings.pdf(published
http://www.nist.gov/tac/publications/2010/participant.papers/CMI_IIT.proceedings.pdf(published
http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt
http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt
https://sites.google.com/site/kuja27/
http://www.computer.org/csdl/proceedings/cloud/2011/4460/00/4460a444-abs.html
http://www.computer.org/csdl/proceedings/cloud/2011/4460/00/4460a444-abs.html
http://www.eurecom.fr/~vukolic/ByzantineEmpire.pdf
http://www.eurecom.fr/~michiard/teaching/slides/clouds/cap-dynamo.pdf
http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt
http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt

CHAPTER

ONE

1095. KINGCOBRA MESSAGING REQUEST-RESPONSE DESIGN -
OPTIONS

1095a. Implementing a message subscription model in kernelspace where clients publish the message that is queued-in
to subscribers’ queue (Topic like implementation - use of ActiveMQ C implementation if available).

1095b. (DONE-minimal implementation) At present a minimum kernelspace messaging system that queues remote re-
quest and handles through workqueue handler is in place. This responds to the client once the Kingcobra servicerequest
function finishes processing the request(reply_to_publisher() in KingCobra driver). Unlike the usual messaging server,
in which client publishes messages of a particular type that are listened to by interested clients, one option is to con-
tinue the status-quo of KingCobra as a peer-to-peer messaging system. Thus every VIRGO node is both a kernelspace
messaging client and server that can both publish and listen. Every message in the cloud can have a universally unique
id assigned by a timestamp server - https://tools.ietf.org/html/rfc4122 (similar to bitcoin protocol) so that each mes-
sage floating in the cloud is unique across the cloud (or) no two messages on the VIRGO cloud are same. The re-
cipient node executing kingcobra_servicerequest_kernelspace() parses the unique-id (example naive unique-id is <ip-
address:port>#localtimestampofmachine which is a simplified version of RFC4122) from the incoming remote request
and responds to the remote client through kernel socket connection that gets queued-in the remote client and handled
similar to incoming remote request. To differentiate request and response-for-request response messages are padded
with a string “REPLY:<unique-id-of-message>” and requests are padded with “REQUEST:<unique-id-of-message>”.
This is more or less similar to TCP flow-control with SEQ numbers but state-less like UDP. Simple analogy is post-
office protocol with reference numbers for each mail and its reply. Thus there are chronologically two queues: (1) queue
at the remote VIRGO cloud service node for request (2) queue at the remote client for response to the request sent in
(1). Thus any cloudnode can have two types of messages - REQUEST and REPLY. Following schematic diagram has
been implemented so far.

3

https://tools.ietf.org/html/rfc4122

kingcobra64-github-code Documentation, Release latest

4 Chapter 1. 1095. KingCobra messaging request-response design - options

CHAPTER

TWO

1300A.(DONE) KINGCOBRA - VIRGO QUEUE - VIRGO CPUPOOLING
, MEMPOOLING AND QUEUE SERVICE DRIVERS INTERACTION

SCHEMATIC DIAGRAM:

KingCobraClient ==========>=<REQUEST:id>===================> VIRGO cpupooling
service =====> VIRGO Queue ============> KingCobraService

|| || || ||

<================= VIRGO Queue <====== VIRGO cpupooling service ====<RE-
PLY:id>=================================== V

KingCobraClient ==========>=<REQUEST:id>===================> VIRGO
mempooling service =====> VIRGO Queue ============> KingCobraService

|| || || ||

<================= VIRGO Queue <====== VIRGO mempooling service
====<REPLY:id>==================================== V

KingCobraClient ==========>=<REQUEST:id>===================> VIRGO Queue
service ====================================> KingCobraService

|| || || ||

<================= VIRGO Queue service ============================<RE-
PLY:id>==================================== V

1300b. (ONGOING) kingcobra_servicerequest_kernelspace() distinguishes the “REQUEST” and “REPLY” and op-
tionally persists them to corresponding on-disk filesystem. Thus a disk persistence for the queued messages can either
be implemented in 1) VIRGO queue driver 2) workqueue.c (kernel itself needs a rewrite (or) 3) KingCobra driver.
Option (2) is difficult in the sense that it could impact the kernel as-a-whole whereas 1) and 3) are modularized. At
present Option 3 persistence within KingCobra driver has been implemented.

1300c.Above option 1095b implements a simple p2p queue messaging in kernel. To get a Topic-like behaviour in
VIRGO queue might be difficult as queue_work() kernel function has to be repeatedly invoked for the same work_struct
on multiple queues which are subscribers of that message in AMQ protocol. Moreover creating a queue at runtime on
need basis looks difficult in kernel which is usually done through some CLI or GUI interface in ActiveMQ and other
messaging servers.

1096. (ONGOING) For the timestamp service, EventNet described in http://sourceforge.net/p/asfer/code/HEAD/tree/
AstroInferDesign.txt is a likely implementation choice. AsFer already has a primitive text files based EventNet
graph implementation in place. Periodic topological sort (quite expensive) of EventNet gives logical ordering
and thus a logical timestamp of the cloud events.

5

http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt
http://sourceforge.net/p/asfer/code/HEAD/tree/AstroInferDesign.txt

kingcobra64-github-code Documentation, Release latest

784. (THEORY - Neuro Cryptocurrency Implemented in AstroInfer - this section is an extended draft on
respective topics in NeuronRain AstroInfer Design -
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt)
MESSAGE-AS-CURRENCY PROTOCOL: If each message payload is also construed as a currency
carrier, each message id can be mapped to a unique currency or a coin with fixed denomination. This is
similar to each currency note having a serial number as unique id. Uniqueness is guaranteed since there
can be only one message (or coin) with that id on the cloud. This simulates a scenaio - “Sender of the
message pays the Receiver with a coin having the unique id and Receiver acknowledges receipt”. This is
an alternative to BitCoin protocol. Double spending is also prohibited since at any point in time the
message or “coin” with unique id can be sent by only one node in the cloud. Unique Cloudwide
Timestamp server mimicks the functionality of “Mint”. There is a difference here between conventional
send-receive of messages - Once a message is sent to remote cloud node, no copy of it should exist
anywhere in the cloud. That is, every MAC currency message is a cloudwide singleton. In pseudocode
this is expressible as:

m1=MAC_alloc(denomination) m2=m1 (—- this is disallowed)

Linux kernel allocation functions - kmalloc() - have a krefs functionality for reference counting within kernel. Re-
fcount for MAC message can never exceed 1 across cloud for above singleton functionality - this has to be a
clause everywhere for any unique MAC id. This requires a cloudwide krefs rather. Buyer decrements cloudwide
kref and Seller increments it. In C++ this is done by std::move() and often required in “Perfect Forwarding” -
http://thbecker.net/articles/rvalue_references/section_07.html - within single addressspace. By overloading opera-
tor=() with Type&& rvalue reference, the necessary networking code can be invoked that does the move which might
include serialization. But unfortunately C++ and Linux kernel are not compatible. The Currency object has to be
language neutral and thus Google Protocol Buffers which have C,C++,Java, Python .proto files compilers support
might be useful but yet the move semantics in Kernel/C is non-trivial that requires cloudwide transactional kernel
memory as mentioned in (31) below. A C++ standalone userspace client-server cloud object move implementation
based on std::move() over network of Protocol Buffer Currency Objects has been added to AsFer repository at -
http://sourceforge.net/p/asfer/code/HEAD/tree/cpp-src/cloud_move which can optionally be upcall-ed to userspace
from VIRGO and KingCobra drivers. This C++ implementation is invoked in userspace with call_usermodehelper()
from VIRGO Queue Messaging via the kernel workqueue handler.

6Chapter 2. 1300a.(DONE) KingCobra - VIRGO queue - VIRGO cpupooling , mempooling and queue
service drivers interaction schematic diagram:

https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
http://thbecker.net/articles/rvalue_references/section_07.html
http://sourceforge.net/p/asfer/code/HEAD/tree/cpp-src/cloud_move

CHAPTER

THREE

784.1 SCHEMATIC DIAGRAM FOR CLOUD PERFECT FORWARDING
WITH ASFER+VIRGOQUEUE+KINGCOBRAUSERSPACE:

Telnet or other client ===========> VIRGO Queue Service Listener ======> VIRGO
Workqueue Handler

[KernelSpace]

V

AsFer Cloud Perfect Forwarding Client <===== KingCobra Userspace shell
script(call_usermodehelper)

|
|

Virtual Currency | | [UserSpace]

V V

AsFer Cloud Perfect Forwarding Server <=================================/

7

kingcobra64-github-code Documentation, Release latest

8 Chapter 3. 784.1 Schematic Diagram for Cloud Perfect Forwarding with
AsFer+VIRGOQueue+KingCobraUserspace:

CHAPTER

FOUR

REFERENCES:

784.2 An example distributed transactional memory implementation in cloud - http://infinispan.org/tutorials/simple/tx/
and http://www.cloudtm.eu/ - these are in userspace cloud (C++ and Java) and may not have cloud move functionality
- move has to be simulated in a transaction: replicate data, delete in one endpoint and create in other endpoint

1097. (THEORY) SIMULATING A VIRTUAL ECONOMY with above MAC protocol (Message-as-currency): If each
message sent is considered as “money” element and cloud nodes and clients are the consumers and producers of
“electronic money”, the timestamp “Mint” becomes a virtual Federal Reserve or Central Bank that controls the
“electronic money” circulation in the cloud. Infact any REPLY messages could be mapped to a Service a client
derives by s(p)ending the REQUEST “money message”. Thus value(REQUEST) should equal value(REPLY)
where value() is a function that measures the value of a money denomination and the value of goods and/or
services for that money. For example Rs.10000 or $10000 has no meaning if it doesn’t translate into a value
(analogy: erstwhile Gold Standard).When the value() function gets skewed phenomena like Inflation arise. Thus
above model could also have a notion of value() and “electronic money inflation”. Thus any “message money”
with a unique id assigned by the cloud unique id(or logical timestamp) server can exist at most in only one node
in the cloud. Money trail can be implemented by prefixing a header to the incoming message money in each
cloud node that receives the money which traces the “path” taken. Cloud has to implement some Byzantine
Fault Tolerant protocol. The value() function to some extent can measure the “deceit” as above. When a Buyer
and Seller’s value() functions are at loggerheads then that is starting point of “cloud corruption” at either side
and might be an undecidable problem.

785. (THEORY - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://
github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt) TRADING WITH
ABOVE KINGCOBRA MAC protocol - somewhat oversimplified:

||

—–money trail—————— | V Buyer ======= sends MAC message (REQUEST
id) =======> Seller (stores the MAC in local cash reserve and prepends money trail) || ||
<============ sends the goods and services (REPLY id) ===

In the above schematic, money with unique id in cloud reaches a buyer after many buyer-seller transitions called “money
trail”. The MAC currency is prefixed by each node to create a chain. Buyer then sends a request to the seller through
MAC virtual currency and seller replies with goods and services. Seller prepends the money trail chain. When a
transaction occurs the whole cloud need not be notified about it except only buyer and seller. MAC Mint could create
a bulk of money denominations and circulate them in cloud economy.

9

http://infinispan.org/tutorials/simple/tx/
http://www.cloudtm.eu/
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

kingcobra64-github-code Documentation, Release latest

10 Chapter 4. References:

CHAPTER

FIVE

REFERENCES:

785.1 Price fixing for items in Buyer-Seller-Trader networks - Trading Networks - Market Equilibrium and Walrasian
Model of Price fixing - http://www.cs.cornell.edu/~eva/traders.pdf 785.2 Algoithmic Game Theory - Market Equilib-
rium for Price - Equilibrium is a strategic standoff - both players can’t better their own present by changing strate-
gies e.g Buyer-Sellers are market players and equilibrium price is the one where both buyer and seller can’t gain by
varying it - http://www.cis.upenn.edu/~mkearns/nips02tutorial/nips.pdf. Buyer-Seller payoff matrix picturises the bar-
gaining problem. 785.3 Price-setting in Trading networks - Chapter 11 - https://www.cs.cornell.edu/home/kleinber/
networks-book/networks-book.pdf

1098. (THEORY) VALUE FOR ELECTRONIC MONEY: How is above MAC money earned - This again requires
linking value to money (as money is not a value by itself and only a pointer to valuable item or resource). Thus
any buyer can “earn” MAC money by something similar to a barter.

786. (THEORY and IMPLEMENTATION - this section is an extended draft on respective topics in
NeuronRain AstroInfer Design -
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt)
FIXING VALUE FOR MAC MONEY: To delineate corruption as discussed in 27 above with value()
disparity between MAC money and REPLY goods and services, an arbiter node in cloud has to “judge”
the value of MAC sent by buyer and goods and services from seller and proclaim if corruption exists.
Thus value() function itself has to be some kind of machine learning algorithm. This is related to or same
as points 12 to 23 above. For example, while buying an item for few million bucks, value() has to take as
input the description of the item and calculate the value “ideally” which is difficult. Because there are no
perfect references to evaluate and only a weighted average of available market price range has to be
taken as a reference which is error-prone. value() function can be recursively defined as(“Reductionism”
and a variant of Ricardo Labor theory of value - value of a commodity is proportional to cost of labor
required to make it - e.g Software is approximately valued by lines of code,concept patent innovations
and manhours):

Obviously the above recursion combinatorially explodes into exponential number of nodes in the recursion tree. Ideally
recursion has to go deep upto quarks and leptons that makeup the standard model. If for practical purposes, recursion
depth is restricted to t then size of value() tree is O(m^t) where m is average number of ingredients per component.
Hence any algorithm computing the value() recursion has to be exponential in time. Computation of value() in the
leaf nodes of the recursion is most crucial as they percolate bottom-up. If leaf nodes of all possible items are same
(like quarks and leptons making up universe) then such atomic ingredient has to have “same” value for all items. Only
the integration cost varies in the levels of the tree.For infinite case, value() function is conjectured to be undecidable -
probably invoking some halting problem reduction .But above value() function could be Fixed Parameter Tractable in
parameter recursion depth - t but yet could only be an approximation. A Turing machine computing value() function
exactly might loop forever and thus Recursively Enumerable and not Recursive. A CVXPY implementation for Pricing
Market Equilibrium has been implemented in KingCobra.

11

http://www.cs.cornell.edu/~eva/traders.pdf
http://www.cis.upenn.edu/~mkearns/nips02tutorial/nips.pdf
https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf
https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

kingcobra64-github-code Documentation, Release latest

5.1 787. (THEORY - this section is an extended draft
on respective topics in NeuronRain AstroInfer De-
sign - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt) Buyer-Seller
and MAC electronic money transaction schematic:

Buyer A——-<id><refcnt:0>———————-> Seller <id><refcnt:1> (increments refcnt)
(<id><refcnt:1> |

<id><refcnt:0> |

after decrement | refcnt |)—————->

Above has to be transactional (i.e atomic across cloud nodes)

12 Chapter 5. References:

CHAPTER

SIX

1099. (THEORY) MAC PROTOCOL REAPER

Reaper thread in each cloud node harvests the zero refcounted allocations and invokes destructors on them. Same MAC
id cannot have kref count of 1 or above in more than one cloud node due to the transaction mentioned previously.

13

kingcobra64-github-code Documentation, Release latest

14 Chapter 6. 1099. (THEORY) MAC protocol reaper

CHAPTER

SEVEN

1100. (THEORY) CLOUD POLICING WITH ARBITERS - REVISITED:

When a suspect node is analyzed when a complaint problem is filed on it, (1) it is of foremost importance on how
flawless is the arbiter who investigates on that and is there a perfect way to choose a perfect arbiter. In the absence
of the previous credibility of entire cloud judiciary is blown to smithereens and falls apart. (2) Assuming a perfect
arbiter which is questionable, next thing is to analyze the credibility of the node who sulked. This is nothing but the
Citation problem in http://arxiv.org/abs/1106.4102 and http://www.nist.gov/tac/publications/2010/participant.papers/
CMI_IIT.proceedings.pdf where a node can positively or negatively cite another node a “Societal Norm” which can
be faulted and citations/opinions could be concocted with malafide intent(perjury). This is rather a generalization of
PageRank algorithm with negative citations. Thus Perfect Cloud Arbitration could be an unsolvable problem. (3) Even
if both arbiter and complainant are perfect which is again questionable, there are still loopholes - lack of evidences or
implicated witnesses might portray a negative impression of a positive node. Thus there are 3 tiers of weakenings in
cloud arbitration and there could be more. P(Good) series in https://sites.google.com/site/kuja27/ precisely addresses
this problem.

7.1 788. (THEORY) MAC Money Flow as MaxFlow problem - this sec-
tion is an extended draft on respective topics in NeuronRain As-
troInfer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

Transactions happening in a cloud are edges between the nodes involved (buyer and seller). Thus it creates a huge
directed graph. Flow of money in this graph can be modelled as Flow network. Minimum Cut of this graph shows
crucial nodes in the graph which play vital role in cloud economy removal of which paralyzes the cloud (could be
Central bank and other financial institutions). This graph has bidirectional edges where one direction is for money
and the opposite direction is for Goods and Services. In the Flow network sum of flows is zero. But in the Money
Flow Network each node is having a cash reserve ratio (CRR) due to commercial transactions which is confidential
and privy to that node only and thus sum of flows can not be zero. Hub nodes in the Money Flow graph which can be
obtained by getting k-core or D-core of the graph by some graph peeling algorithms are crucial nodes to the economy
that contribute to Money circulation.

15

http://arxiv.org/abs/1106.4102
http://www.nist.gov/tac/publications/2010/participant.papers/CMI_IIT.proceedings.pdf
http://www.nist.gov/tac/publications/2010/participant.papers/CMI_IIT.proceedings.pdf
https://sites.google.com/site/kuja27/

kingcobra64-github-code Documentation, Release latest

16 Chapter 7. 1100. (THEORY) Cloud Policing With Arbiters - Revisited:

CHAPTER

EIGHT

1101. (THEORY) CYCLES AND COMPONENTS IN ABOVE MAC
MONEY FLOW GRAPH:

Above graph of money transactions could be cyclic which implies a supply chain. Strongly connected components of
this graph are most related nodes that are in same industry.

17

kingcobra64-github-code Documentation, Release latest

18 Chapter 8. 1101. (THEORY) Cycles and components in above MAC Money Flow Graph:

CHAPTER

NINE

1102. (THEORY) STOCK TRADING:

One of the component in above MAC Money Flow Graph of cloud could be a virtual Stock Exchange. Based on the
financial and securities transactions of constituent organizations in the graph, index of the exchange varies.

9.1 789. (THEORY) Analysis of Poverty and Alleviation
through above money flow graph - this section is an ex-
tended draft on respective topics in NeuronRain AstroIn-
fer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

Weights of the edges of money flow graph are the denominations of the transaction. Thus high value edges and low
value edges divide the Graph logically into Rich and Poor strata(Bourgeoisie and Proletariat subgraphs). Equitable
graph is the one which does not have too much of value difference between Rich and Poor sets of edges - a utopian to
achieve. Mathematically, it is an optimization LP problem that seeks to minimize sum(RichEdges)-sum(PoorEdges)
or Sum(RichVertices) - sum(PoorVertices) - without harming either - to be precise. This requires money flow to be
programmed to find a feasible solution to this LP subject to constraints like work-pay parity etc.,(there could be more
variables and constraints to this LP) . Due to CRR above Vertices also can be Rich and Poor in addition to Rich Edges
and Poor Edges.

Previous Linear Program could be weighted to
[Sum(w(i) * RichEdges) - Sum(w(k) * PoorEdges). Money Flow Graph (or Money Trail as it is commonly
termed) is a potential expander of high regularity. Some constraints could be imposed on this Poverty Alleviation
Linear Program e.g Number of Rich edges (x) must be atleast a non-negligible fraction of Number of poor edges
(y) which guarantees equitable money trail:] R(i) = Rich Edges P(i) = Poor Edges

minimize:
Poverty = Sum_1_to_x(w(i) * R(i)) - Sum_1_to_y(w(k) * P(i))

subject to constraint:
x >= epsilon * y, 0 < epsilon < 1

19

kingcobra64-github-code Documentation, Release latest

20 Chapter 9. 1102. (THEORY) STOCK TRADING:

CHAPTER

TEN

REFERENCES:

789.1 J-PAL case study of social programs fund flow reforms - https://www.povertyactionlab.org/case-study/
fund-flow-reforms-improved-social-program-delivery-india

10.1 790.(THEORY) Demand and Supply and Value() function
- Quantitative Majority Circuit - this section is an ex-
tended draft on respective topics in NeuronRain AstroIn-
fer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

Alternative to the recursive definition of value() function above can be done through Demand and Supply - more the
demand and less the supply, price increases and vice-versa. This is quite subjective compared to absolute recursive
definition above. To simulate demand and supply, the weights of the money edges (-> direction) in the bidirectional
graph change and fluctuate dynamically over time for unchanging weights of the Goods and Services edges (<- direc-
tion) between any pair of Buyer-Seller vertices. This makes Money and G&S Flow graph a Dynamic Graph with edge
weight update primitive. Parallels can be drawn between majority voting and Demand-Supply pricing - Candidates are
replaced by commodities and Votes for candidates are replaced by Consumers demanding a product - but difference
being the dynamism and inverse proportionality of demand-supply - Number of demanding consumers (voter leaves of
majority circuit) increase with dwindling availability of commodity (Candidate voted for) which is a special variation
of voting. Every commodity vertex and its buyer neighborhood in Money Trail graph could be translated to a major-
ity voting circuit. In essence, leaves of majority circuit for demand-supply dynamically bloat or shrink depending on
quantity of commodity which is a quantitative weighted version of majority circuit vis-a-vis conventional qualitative
boolean and non-boolean (set partition/LSH) majority neglecting volume of a candidate. This quantitative dynamic
majority circuit gadget can formalize any economic process which has fluctuating demand-supply underneath. In the
context of social networks, demand-supply inverse relationship defines a least energy Intrinsic Fitness constraint - Ver-
tex or commodity in a Market Bipartite Graph (edges between two sets - buyers and commodities) of least availability
attracts most buyers and thus has most merit. Szemeredi’s Regularity Lemma implies any graph can be approximately
partitioned as union of bipartite graphs by which Money Trail graph can be decomposed as union of Bipartite graphs
of random edge densities (buyers and sellers). Quantum of a commodity vertex in Buy-Sell Market Bipartite Graph
could be represented by gradation of its color (darkest-most available to lightest-least available) which is dynamically
recomputed. Section 727 of NeuronRain Unified Theory Drafts delves into Fame-Merit counterpart of this problem -
Bipartite decomposition of WWW. BWBP model of majority has an advantage of constant width 5 of variable length
= 4^depth - Length of Quantitative majority BWBP varies depending on demand-supply.

21

https://www.povertyactionlab.org/case-study/fund-flow-reforms-improved-social-program-delivery-india
https://www.povertyactionlab.org/case-study/fund-flow-reforms-improved-social-program-delivery-india

kingcobra64-github-code Documentation, Release latest

22 Chapter 10. References:

CHAPTER

ELEVEN

REFERENCES:

790.1 Barrington Theorem - Majority can be computed by Bounded Width Branching Program (BWBP) of width 5
and length 4^d - http://www.ccs.neu.edu/home/viola/classes/gems-08/lectures/le11.pdf 790.2 Szemeredi Regularity
Lemma - Section 1.3 - http://www.math.ucsd.edu/~fan/teach/262/read/reg.pdf - “. . . the Regularity Lemma provides
us with an approximation of an arbitrary dense graph with the union of a constant number of random-looking bipartite
graphs. . . ”

11.1 791.(THEORY) Hidden or Colored Money - this section is an
extended draft on respective topics in NeuronRain AstroIn-
fer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

In an ideal Cloud with only MAC currencies, colored money can co-exist if (not limited to) some money trails are
missing, due to “cloud corruption”, systemic failure, hardware and network issues etc.,. Probably this is the direct
consequence of CAP theorem and can be conjectured to be undecidable. Hidden money is to some extent dependent
on quantity of net flow (if non-zero) and how much of this net flow is contributed by Rich vertices and Edges. Money
Circulation with Colored money can be formulated as Network Flow Problem with Time horizon and storage at nodes.
Time horizon implies a certain flow has to happen before a stop time. Flow conservation is affected by this Dynamic
Flow because of storage at nodes and money entering a node need not be equal to money leaving. Thus not all Hid-
den/Colored money is illegal in theoretical terms. As mentioned in 39.1, storage is simulated with a closed loop at
nodes so that flow conservation is not seemingly violated. Profiteering is achieved by money flows over time in finan-
cial markets by assigining a multiplicative factor at each edge which accrues through a cycle and comes back to start
node in cycle with a magnification in value. BlockChain techniques maintain ledgers which record all transactions
globally thus decimating hidden unaccounted wealth if any. KingCobra experimental MAC currency relies on unique
global identifier and global refcounts with atomic cloud transactions in linux kernel. Money Flow Graph mentioned
in 34-39 has striking resemblance to Money Flow Markets already studied in Algorithmic Game Theory(AGT). 39.3
primarily devotes to Pricing and Equilibrium of Edges in Money Flow Graphs and not much on Colored Money Flow.
An algorithm to find colored money flow could be a major advance in AGT. Prima facie there exists no zero-knowledge
blackbox proof algorithm to find colored money because all storage data is a prerequisite which is impossible to know.
Money trail for MAC currency described in 22,27,28 requires tracking of currencies. There are recent dollar and euro
bills issued with Radio Frequency ID tags (RFID).

Total storage of money in Flow Market Graph = | Incoming money flow at Source - Incoming money flow at Sink | i.e
Flow conservation is no longer obeyed.

There is a special vertex in Money Flow Market designated as Direct Taxation Hub which has incoming direct tax
money flow edges from all other vertices in Flow market.Colored money is then approximately the taxed storage money
estimated above minus the net flow of money received at Taxation Hub.

Colored Money = | Total storage money * Direct Taxation rate - Incoming Flow at Direct Taxation Hub Node| Colored

23

http://www.ccs.neu.edu/home/viola/classes/gems-08/lectures/le11.pdf
http://www.math.ucsd.edu/~fan/teach/262/read/reg.pdf

kingcobra64-github-code Documentation, Release latest

Money = | Incoming money flow at Source * Direct Taxation rate - Incoming money flow at Sink * Direct Taxation rate
- Incoming Flow at Direct Taxation Hub Node |

Previous is an approximate naive zero-knowledge estimation of Colored money in Money Flow Market. This assumes
that there is always a sink in Money Flow Market which is not necessarily valid unless notes are returned to mint.
Satellite RFID Tracking technologies though invasive and intrusive like previous can present a rough figure of total
money circulation in Source and Sink.

Above estimate is for direct taxation and resultant evasion. For indirect taxes (on Goods and Services etc.,), there is no
direct impact on the money component and only G&S are affected. Combining Goods,Services and Income into one
(direct+indirect) taxation could have a negative effect on Colored money because incentive to hide money no longer
exists. For example, if only Goods and Services consumed by high-income brackets are preferentially taxed at high
percentage replacing tax on income, income is also indirectly taxed in addition to G&S. Thus there is no necessity
to tax income and any advantage of such direct taxation is indirectly usurped by preferential G&S taxation. Previous
zero-knowledge estimate then becomes:

Colored Money = | Total Goods and Services * Taxation rate - Incoming Flow at Indirect Taxation Hub Node| Colored
Money = | GDP^2 * Tax-to-GDP ratio - Incoming Flow at Indirect Taxation Hub Node| where GDP is assumed to be
equal to Total Goods and Services.

24 Chapter 11. References:

CHAPTER

TWELVE

REFERENCES:

791.1 Network Flows over time over Storage Area Networks (SAN) - https://hal.inria.fr/inria-00071643/
document 791.2 Network Flow - [GoldbergTardosTarjan] - http://www.cs.cornell.edu/~eva/network.flow.
algorithms.pdf 791.3 Algorithmic Game Theory - Flow Markets - [TimRoughGarden] - http://theory.
stanford.edu/~tim/books.html 791.4 RFID tagged currencies - $100 bill - http://www.businessinsider.in/
New-Smart-Paper-Could-Put-An-End-To-Dark-Money/articleshow/21134569.cms 791.5 Cons of RFID curren-
cies - http://www.prisonplanet.com/022904rfidtagsexplode.html 791.6 Mechanism Design and Machine Learning
- https://www.cs.cmu.edu/~mblum/search/AGTML35.pdf - Design of algorithms for maximizing gain in auctions
involving sellers and buyers 791.7 Financial and Economic Networks - https://supernet.isenberg.umass.edu/bookser/
innov-ch1.pdf

12.1 1103. Commits as on 1 March 2014

25

https://hal.inria.fr/inria-00071643/document
https://hal.inria.fr/inria-00071643/document
http://www.cs.cornell.edu/~eva/network.flow.algorithms.pdf
http://www.cs.cornell.edu/~eva/network.flow.algorithms.pdf
http://theory.stanford.edu/~tim/books.html
http://theory.stanford.edu/~tim/books.html
http://www.businessinsider.in/New-Smart-Paper-Could-Put-An-End-To-Dark-Money/articleshow/21134569.cms
http://www.businessinsider.in/New-Smart-Paper-Could-Put-An-End-To-Dark-Money/articleshow/21134569.cms
http://www.prisonplanet.com/022904rfidtagsexplode.html
https://www.cs.cmu.edu/~mblum/search/AGTML35.pdf
https://supernet.isenberg.umass.edu/bookser/innov-ch1.pdf
https://supernet.isenberg.umass.edu/bookser/innov-ch1.pdf

kingcobra64-github-code Documentation, Release latest

26 Chapter 12. References:

CHAPTER

THIRTEEN

EXAMPLE JAVA PUBLISHER AND LISTENERS THAT USE ACTIVEMQ
AS THE MESSAGING MIDDLEWARE HAVE BEEN COMMITTED TO

REPOSITORY FOR AN ACTIVEMQ QUEUE INSTANCE CREATED FOR
KINGCOBRA. FOR MULTIPLE CLIENTS THIS MIGHT HAVE TO BE A

TOPIC RATHER THAN QUEUE INSTANCE. REQUEST TYPES ABOVE
AND A WORKFLOW FRAMEWORK CAN BE ADDED ON THIS. THIS

WILL BE A JMS COMPLIANT IMPLEMENTATION WHICH MIGHT
SLOW DOWN COMPARED TO A LINUX WORKQUEUE OR QUEUE

IMPLEMENTATION BEING DONE IN VIRGO.

27

kingcobra64-github-code Documentation, Release latest

28Chapter 13. Example java Publisher and Listeners that use ActiveMQ as the messaging middleware
have been committed to repository for an ActiveMQ queue instance created for KingCobra. For

multiple clients this might have to be a Topic rather than Queue instance. Request types above and
a workflow framework can be added on this. This will be a JMS compliant implementation which

might slow down compared to a linux workqueue or queue implementation being done in VIRGO.

CHAPTER

FOURTEEN

1104. COMMITS AS ON 17 MARCH 2014

KingCobra userspace library and kernelspace driver module have been implemented that are invoked 1) either in user-
mode by call_usermodehelper() 2) or through intermodule invocation through exported symbols in KingCobra kernel
module, by the workqueue handler in VIRGO workqueue implementation.

14.1 1105. Commits as on 22 March 2014

Minimalistic Kernelspace messaging server framework with kernel workqueue,handler and remote cloud client has
been completed - For this VIRGO clone cpupooling driver has been added a clause based on a boolean flag, to direct
incoming request from remote client to VIRGO linux workqueue which is popped by workqueue handler that invokes
a servicerequest function on the KingCobra kernel module. (Build notes: To remove any build or symbol errors, Mod-
ule.symvers from VIRGO queue has to be copied to VIRGO cloudexec and built to get a unified VIRGO cloudexec
Module.symvers that has exported symbol definitions for push_request()). End-to-end test with telnet path client send-
ing a request to VIRGO cloudexec service, that gets queued in kernel workqueue, handled by workqueue handler that
finally invokes KingCobra service request function has been done and the kern.log has been added to repository at
drivers/virgo/queuing/test_logs/

14.2 1106. Commits as on 29 March 2014

Initial commits for KingCobra Request Response done by adding 2 new functions parse_ip_address() and re-
ply_to_publisher() in kingcobra_servicerequest_kernelspace()

14.3 1107. Commits as on 30 March 2014

Both VIRGO cpupooling and mempooling drivers have been modified with use_as_kingcobra_service boolean flag for
sending incoming remote cloud node requests to VIRGO queue which is serviced by workqueue handler and KingCobra
service as per the above schematic diagram and replied to.

29

kingcobra64-github-code Documentation, Release latest

14.4 1108. Commits as on 6 April 2014

Fixes for REQUEST and REPLY headers for KingCobra has been made in virgo_cloudexec_mempool recvfrom() if
clause and in request parser in KingCobra with strsep(). This has been implemented only in VIRGO mempool codepath
and not in VIRGO clone.

14.5 1109. Commits as on 7 April 2014

New function parse_timestamp() has been added to retrieve the timestamp set by the VIRGO mempool driver before
pushing the request to VIRGO queue driver

14.6 1110. Commits as on 29 April 2014

Intial commits for disk persistence of KingCobra request-reply queue messages have been done with addition of new
boolean flag kingcobra_disk_persistence. VFS calls are used to open and write to the queue.

14.7 1111. Commits as on 26 August 2014

KingCobra driver has been ported to 3.15.5 kernel and bugs related to a kernel_recvmsg() crash, timestamp parsing etc.,
have been fixed. The random crashes were most likely due to incorrect parameters to filp_open() of disk persistence
file and filesystem being mounted as read-only.

14.8 1112. Commits as on 17 August 2015

KingCobra + VIRGO Queuing port of Linux Kernel 4.1.5 :

• changed the REQUEST_REPLY.queue disk persisted queue path to
/var/log/kingcobra/REQUEST_REPLY.queue

• kernel built sources, object files

• kern.log with logs for telnet request sent to VIRGO queue driver, queued in kernel work queue and handler
invocation for the

KingCobra service request kernel function for the popped request; disk persisted
/var/log/kingcobra/REQUEST_REPLY.queue

14.9 1113. Commits as on 14 October 2015

AsFer Cloud Perfect Forwarding binaries are invoked through call_usermodehelper() in VIRGO queue. KingCobra
commands has been updated with a clause for cloud perfect forwarding.

30 Chapter 14. 1104. Commits as on 17 March 2014

kingcobra64-github-code Documentation, Release latest

14.10 1114. Commits as on 15 October 2015

• Updated KingCobra module binaries and build generated sources

• kingcobra_usermode_log.txt with “not found” error from output redirection (kingcobra_commands.c). This er-
ror is due to need for absolute path. But there are “alloc_fd: slot 1 not NULL!” after fd_install() is uncommented
in virgo_queue.h call_usermodehelper() code. The kern.log with these errors has been added to testlogs

• kingcobra_commands.c has been changed to invoke absolute path executable. With uncommenting of fd_install
and set_ds code in virgo_queue the return code of call_usermodehelper() is 0 indicating successful invocation

14.11 1115. Commits as on 10 January 2016

NeuronRain KingCobra research version 2016.1.10 released.

14.10. 1114. Commits as on 15 October 2015 31

kingcobra64-github-code Documentation, Release latest

32 Chapter 14. 1104. Commits as on 17 March 2014

CHAPTER

FIFTEEN

COMMIT COMMENTS:

33

kingcobra64-github-code Documentation, Release latest

34 Chapter 15. Commit comments:

CHAPTER

SIXTEEN

COMMITS FOR TELNET/SYSTEM CALL INTERFACE TO VIRGO
CPUPOOLING -> VIRGO QUEUE -> KINGCOBRA

*) This was commented earlier for the past few years due to a serious kernel panic in previous kernel versions - <=
3.15.5 *) In 4.1.5 a deadlock between VIRGO CPUPooling and VIRGO queue driver init was causing following error
in “use_as_kingcobra_service” clause :

• “gave up waiting for virgo_queue init, unknown symbol push_request()”

*) To address this a new boolean flag to selectively enable and disable VIRGO Queue kernel service mode
“virgo_queue_reactor_service_mode” has been added. *) With this flag VIRGO Queue is both a kernel service
driver and a standalone exporter of function symbols - push_request/pop_request *) Incoming request data from tel-
net/virgo_clone() system call into cpupooling kernel service reactor pattern (virgo cpupooling listener loop) is treated
as generic string and handed over to VIRGO queue and KingCobra which publishes it. *) This resolves a long standing
deadlock above between VIRGO cpupooling “use_as_kingcobra_service” clause and VIRGO queue init. *) This makes
virgo_clone() systemcall/telnet both synchronous and asynchronous - requests from telnet client/virgo_clone() system
call can be either synchronous RPC functions executed on a remote cloud node in kernelspace (or) an asynchronous
invocation through “use_as_kingcobra_service”

clause path to VIRGO Queue driver which enqueues the data in kernel workqueue and subsequently popped
by KingCobra.

*) Above saves an additional code implementation for virgo_queue syscall paths - virgo_clone() handles, based on
config selected, incoming data passed to it either as a remote procedure call or as a data that is pushed to VIRGO
Queue/KingCobra pub-sub kernelspace *) Kernel Logs and REQUEST_REPLY.queue for above commits have been
added to kingcobra c-src/testlogs/

16.1 1117. Commits - KingCobra 64 bit and VIRGO Queue + KingCo-
bra telnet requests - 17 April 2017

) Rebuilt KingCobra 64bit kernel module *) telnet requests to VIRGO64 Queueing module listener driver are serviced
by KingCobra servicerequest *) Request_Reply queue persisted for this VIRGO Queue + KingCobra routing has been
committed to c-src/testlogs. *) kern.log for this routing has been committed in VIRGO64 queueing directory *) Similar
to other drivers struct socket reinterpret cast to int has been removed and has been made const in queuesvc kernel thread

35

kingcobra64-github-code Documentation, Release latest

16.2 779. (FEATURE-DONE) Commits - CVXPY implementation for
Eisenberg-Gale Convex Program - 18 August 2017 - - this sec-
tion is an extended draft on respective topics in NeuronRain
AstroInfer Design - https://github.com/shrinivaasanka/asfer-
github-code/blob/master/asfer-docs/AstroInferDesign.txt

(*) First commits for Convex Optimized Market Equilibrium Prices (*) Imports CVXPY Convex Program solver (*)
Objective function is a logistic variant of Eisenberg-Gale Convex Program i.e uses money * log(1+e^utility) instead of

money * log(utility) because of curvature error (log is error flagged as concave and logistic is convex per:
http://www.cvxpy.org/en/latest/tutorial/functions/index.html#vector-matrix-functions)

(*) Formulates constraints and objective functions based on http://www.cs.cmu.edu/~sandholm/cs15-892F13/
algorithmic-game-theory.pdf - Page 106 and Equation 5.1 (*) But, For all installed solvers ECOS, ECOS_BB, SCS, LS
solved convex program prints value as None despite all constraints and objective functions being convex. Also is_dcp()
prints “not a disciplined convex program”. Logs in testlogs/. (*) Obviously it should have worked. Therefore this is
only a partial implementation commit. (*) This implementation uses numpy randomly initialized arrays for Money each
buyer has and per-good utility(happiness) each buyer has. (*) Replacing money with perceived merit values translates
this Market Equilibrium - Intrinsic Value versus Market Price - to Merit

Equilibrium - Intrinsic Merit versus Perceived Merit. This has been already described in
NeuronRain AsFer Design Documents:

• http://sourceforge.net/p/asfer/code/HEAD/tree/asfer-docs/AstroInferDesign.txt and

• https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/
AstroInferDesign.txt

16.3 780. (FEATURE-DONE - this section is an extended
draft on respective topics in NeuronRain AstroInfer De-
sign - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt) Commits -
Convex Optimization - DCCP - 21 August 2017

(*) import dccp has been added (*) DCCP is the recent advancement and generalization of DCP for convex-concave
programs (*) method=’dccp’ has been added as parameter to solve() (*) Objective function has been changed to log()
from logistic() - curvature is concave which is in conflict with definition of eisenberg-gale convex program in textbooks.
Reason for this contradiction is unknown. (*) But DCCP overcomes the DCP limitation and solve() prints converged
solutions for objective functions (*) logs have been committed to testlogs/ (*) CVXOPT solver has been installed but
it does not solve the Eisenberg-Gale objective function. Only SCS solver works - by default applies KKT conditions
indirectly.

36 Chapter 16. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue ->
KingCobra

http://www.cvxpy.org/en/latest/tutorial/functions/index.html#vector-matrix-functions
http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
http://sourceforge.net/p/asfer/code/HEAD/tree/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

kingcobra64-github-code Documentation, Release latest

16.4 1118. (FEATURE-DONE) Commits - Convex Optimization - DCCP
- 22 August 2017

(*) Verbose set to True for printing Splitting Conic Solver progress information (*) logs committed to testlogs/

16.5 1119. (FEATURE-DONE) Commits - Convex Optimization update
- 29 August 2017

(*) Removed hardcoded variable values in objective and constraints (*) In the context of pricing, ECOS Error Metrics
print the matrices of market clearing prices for goods (Reference - pages 3072 and 3073 of https://web.stanford.edu/
~boyd/papers/pdf/ecos_ecc.pdf - KKT conditions in ECOS solver)

16.6 778. (FEATURE-DONE) Convex Optimization - Pricing
Computation - 30 August 2017 - this section is an ex-
tended draft on respective topics in NeuronRain AstroIn-
fer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

(*) Prices of Goods/Services have been computed explicitly from Karush-Kuhn-Tucker Conditions (1,2,3 and especially
4) (*) References:

• Pages 106-108 of http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf)

• KKT conditions and Conic Optimization- https://arxiv.org/pdf/1312.3039.pdf

(*) logs committed to testlogs/

16.7 1120. (FEATURE-DONE) KingCobra Kernelspace Messaging
Driver for 4.13.3 64-bit kernel - 24 September 2017

(*) KingCobra driver in GitHub and SourceForge at present are 32-bit based on mainline 4.1.5 kernel (*) Both USB-
md and KingCobra kernel modules are subsidiaries of VIRGO kernel (*) There is a necessity for 64-bit version of
KingCobra for interoperability to VIRGO64 64-bit kernel on mainline version 4.13.3 (*) This requires separate repos-
itory for KingCobra because of significant kernel function changes between 4.1.5 and 4.13.3 and idiosyncrasies of
64-bit (*) KingCobra driver has been rebuilt on 4.13.3 64-bit kernel after some changes to function prototypes and
new kingcobra64 repository is initialized with these commits (*) KingCobra kernel sockets have been TLS-ed by ker-
nel_setsockopt(TX_TLS) newly introduced in 4.13 kernel. (*) After this complete request-reply traffic from VIRGO64
system calls to VIRGO64 queueing and KingCobra is encrypted.

16.4. 1118. (FEATURE-DONE) Commits - Convex Optimization - DCCP - 22 August 2017 37

https://web.stanford.edu/~boyd/papers/pdf/ecos_ecc.pdf
https://web.stanford.edu/~boyd/papers/pdf/ecos_ecc.pdf
http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf
https://arxiv.org/pdf/1312.3039.pdf

kingcobra64-github-code Documentation, Release latest

16.8 1121. (FEATURE-DONE) Commits - telnet - VIRGO64Queue -
KingCobra64 - 25 September 2017

(*) Disk persisted KingCobra64 REQUEST-REPLY Queue written by VIRGO64 Queue to KingCobra64 telnet invo-
cation after 4.13.3 64-bit KTLS upgrade has been committed

16.9 1122. (FEATURE-DONE) VIRGO64 Queueing Kernel Module Lis-
tener - KingCobra64 - 4.13.3 - 6 October 2017

(*) telnet client connection to VIRGO64 Queue and a subsequent workqueue routing (pub/sub) to KingCobra64 has
been tested on 4.13.3 (*) TX_TLS socket option has not been disabled and is a no-op because it has no effect on the
socket. (*) REQUEST_REPLY.queue for this routing from VIRGO64 queue and persisted by KingCobra64 has been
committed to KingCobra64 repositories in GitHub and SourceForge

16.10 777. (FEATURE-DONE) KingCobra64 Neuro Electronic
Currency transactional cloud move - Perfect Forward
- 17 January 2018 - this section is an extended draft
on respective topics in NeuronRain AstroInfer De-
sign - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

(#) Neuro Currency cloud perfect forward has been made transactional by wrapping it by Python Transaction Manager
(widely used in Zope Python Application Server) (#) imports transaction python package and invokes begin() and
commit() on subprocess call to neuro cloud move client and server

16.11 776. (FEATURE) Concurrent Managed Workqueue(CMWQ),
VIRGO64 Queueing and KingCobra64 messaging - 12 June
2019 - this section is an extended draft on respective IoT
messaging and kernel analytics topics in NeuronRain AstroIn-
fer Design - https://github.com/shrinivaasanka/asfer-github-
code/blob/master/asfer-docs/AstroInferDesign.txt

1. Existing workqueue underneath VIRGO64 queueing and requests routed by it to KingCobra64 messaging are old
legacy workqueues which have been revamped to Concurrent Managed Workqueue which supports concurrent mes-
saging and lot of other options in queue creation. 2. create_workqueue() in VIRGO64 Queueing has been changed
to alloc_workqueue() of Concurrent Managed Workqueue. 3. VIRGO64 Queueing request routing to KingCobra64
messaging has been tested with CMWQ and queueing log and kingcobra64 Request-Reply Queue have been committed
to respective testlogs of the drivers 4. reading from stream has been disabled in virgo_kernel_analytics.h 5. Reference
- CMWQ documentation - https://www.kernel.org/doc/html/v4.11/core-api/workqueue.html 6. Byzantine Fault Tol-
erance in KingCobra64 persisted queue can be made available by performant CMWQ and routing to the Replicas of
REQUEST_REPLY.queue by any of the practical BFT protocols available. 7. Most important application of CMWQ

38 Chapter 16. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue ->
KingCobra

https://www.kernel.org/doc/html/v4.11/core-api/workqueue.html

kingcobra64-github-code Documentation, Release latest

based VIRGO64-KingCobra64 is in the context of kernelspace hardware messaging in IoT,Drones and other analytics
driven embedded systems. 8. An example usecase which is a mix of sync and async I/O in kernelspace:

(*) Analytics Variables computed by userspace machine learning are read over socket stream by ker-
nel_analytics driver and

exported kernelwide
(*) Some interested Drone driver in kernel (example PXRC) reads the analytics variables synchronously and
sends reply messages asynchronously to VIRGO64 Queuing driver over kernel sockets. (*) VIRGO Queuing
routes the queued messages to KingCobra64 driver

16.12 1216. (THEORY and FEATURE) Algorithmic Trading in Ficti-
tious Neuro Cryptocurrency - EventNet Graphical Event Model
(GEM) HyperLedger implementation - 14 February 2022 - re-
lated to 690,789,790,791,1213,1214,1215 and all sections on
Computational Economics - Theory of Value (economic merit),
Algorithmic trading, Quantitative Majority Circuit simulation
of Demand-Supply, Bounded Width Branching Programs, Al-
gorithmic Game Theory and Mechanism Design, Money Trail,
Poverty Alleviation, Graphical Event Models and Causal Event
Models, Timeseries analysis, Integer Factorization and Money
Changing Program ILP Proof of Work for Neuro Cryptocur-
rency, Byzantine Fault Tolerance

1216.1 This commit implements a new Python 3.8 source file Neuro_EventNetGEM_HyperLedger.py defining a class
for Neuro Cryptocurrency transactional hyperledger. Class member function algorithmic_trading(self,commodity,
quantity, neuro_currency, buyer, seller, type) simulates an algorithmic trading activity of buy and sell for a commodity
of specified quantity and updates EventNet GEM HyperLedger. 1216.2 Buy-Sell transactions are uniquely identified by
the Boost UUID of Neuro Cryptocurrency paid,commodity name and type of transaction. Commodity could include
Stock quotes analyzed earlier by Timeseries (ARMA and ARIMA) in NeuronRain AstroInfer where high frequency al-
gorithmic trading aided by machine learning is used widely in practice. 1216.3 Following EventNet GEM convention
two text files Neuro_HyperLedger_EventNetGEMEdges.txt and Neuro_HyperLedger_EventNetGEMVertices.txt are
updated for each transaction and the actors concerned (buyer-seller). Direction of edge in money trail graph is deter-
mined by parenthesized ordered pair of actors. 1216.4 4 sample Neuro transactions (of few trillion Neuros) have been
written to Neuro_HyperLedger_EventNetGEMVertices.txt and Neuro_HyperLedger_EventNetGEMEdges.txt respec-
tively below:

commodity1:buy:#ff1f984d-ab18-4e69-9a3b-85ddd3c2cce7:1000000000000 - buyer1,seller1 -
(buyer1,seller1)# commodity2:buy:#ff1f984d-ab18-4e79-1a3b-85ddd3c6cde7:2000000000000
- buyer2,seller2 - (buyer2,seller2)# commodity3:sell:#ff2f984d-ab18-5e79-1a3b-
85ddd4c1cde7:3000000000000 - buyer3,seller3 - (buyer3,seller3)# commodity4:sell:#ff2f994d-ab18-
5e79-5a3b-85ddd4c3cde7:9000000000000 - buyer4,seller4 - (buyer4,seller4)# — (buyer1,seller1)
(buyer2,seller2) (buyer3,seller3) (buyer4,seller4)

1216.5 EventNet GEM for Neuro Cryptocurrency transactions plays the role of blocks added to blockchain for each
unique transaction and explicitly stores the causality information for every transaction event. EventNet storage for Neuro
HyperLedger could be a NoSQL cloud backend of low latency which makes it truly distributed. 1216.6 Neuro cryp-
tocurrency Boost UUIDs for some denomination minted by Pseudorandom Choice, Integer Factorization and Money

16.12. 1216. (THEORY and FEATURE) Algorithmic Trading in Fictitious Neuro Cryptocurrency -
EventNet Graphical Event Model (GEM) HyperLedger implementation - 14 February 2022 - related
to 690,789,790,791,1213,1214,1215 and all sections on Computational Economics - Theory of Value
(economic merit), Algorithmic trading, Quantitative Majority Circuit simulation of Demand-Supply,
Bounded Width Branching Programs, Algorithmic Game Theory and Mechanism Design, Money
Trail, Poverty Alleviation, Graphical Event Models and Causal Event Models, Timeseries analysis,
Integer Factorization and Money Changing Program ILP Proof of Work for Neuro Cryptocurrency,
Byzantine Fault Tolerance

39

kingcobra64-github-code Documentation, Release latest

Changing Problem Integer Linear Program Proof of Work of varied complexity classes ranging from Bounded Proba-
bilistic Polynomial, Nick’s class to NP-Complete have to be digitally signed, a pre-requisite assumed herein.

40 Chapter 16. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue ->
KingCobra

CHAPTER

SEVENTEEN

REFERENCES:

1216.7 Bitcoin Blockchain Hyperledgering - https://en.wikipedia.org/wiki/Blockchain#/media/File:Bitcoin_Block_
Data.svg - Byzantine Fault Tolerant - Does not encode causality explicitly as Graphical model though transaction
merkle tree has details of the participants.

41

https://en.wikipedia.org/wiki/Blockchain#/media/File:Bitcoin_Block_Data.svg
https://en.wikipedia.org/wiki/Blockchain#/media/File:Bitcoin_Block_Data.svg

	1095. KingCobra messaging request-response design - options
	1300a.(DONE) KingCobra - VIRGO queue - VIRGO cpupooling , mempooling and queue service drivers interaction schematic diagram:
	784.1 Schematic Diagram for Cloud Perfect Forwarding with AsFer+VIRGOQueue+KingCobraUserspace:
	References:
	References:
	787. (THEORY - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt) Buyer-Seller and MAC electronic money transaction schematic:

	1099. (THEORY) MAC protocol reaper
	1100. (THEORY) Cloud Policing With Arbiters - Revisited:
	788. (THEORY) MAC Money Flow as MaxFlow problem - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

	1101. (THEORY) Cycles and components in above MAC Money Flow Graph:
	1102. (THEORY) STOCK TRADING:
	789. (THEORY) Analysis of Poverty and Alleviation through above money flow graph - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

	References:
	790.(THEORY) Demand and Supply and Value() function - Quantitative Majority Circuit - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

	References:
	791.(THEORY) Hidden or Colored Money - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

	References:
	1103. Commits as on 1 March 2014

	Example java Publisher and Listeners that use ActiveMQ as the messaging middleware have been committed to repository for an ActiveMQ queue instance created for KingCobra. For multiple clients this might have to be a Topic rather than Queue instance. Request types above and a workflow framework can be added on this. This will be a JMS compliant implementation which might slow down compared to a linux workqueue or queue implementation being done in VIRGO.
	1104. Commits as on 17 March 2014
	1105. Commits as on 22 March 2014
	1106. Commits as on 29 March 2014
	1107. Commits as on 30 March 2014
	1108. Commits as on 6 April 2014
	1109. Commits as on 7 April 2014
	1110. Commits as on 29 April 2014
	1111. Commits as on 26 August 2014
	1112. Commits as on 17 August 2015
	1113. Commits as on 14 October 2015
	1114. Commits as on 15 October 2015
	1115. Commits as on 10 January 2016

	Commit comments:
	Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue -> KingCobra
	1117. Commits - KingCobra 64 bit and VIRGO Queue + KingCobra telnet requests - 17 April 2017
	779. (FEATURE-DONE) Commits - CVXPY implementation for Eisenberg-Gale Convex Program - 18 August 2017 - - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
	780. (FEATURE-DONE - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt) Commits - Convex Optimization - DCCP - 21 August 2017
	1118. (FEATURE-DONE) Commits - Convex Optimization - DCCP - 22 August 2017
	1119. (FEATURE-DONE) Commits - Convex Optimization update - 29 August 2017
	778. (FEATURE-DONE) Convex Optimization - Pricing Computation - 30 August 2017 - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
	1120. (FEATURE-DONE) KingCobra Kernelspace Messaging Driver for 4.13.3 64-bit kernel - 24 September 2017
	1121. (FEATURE-DONE) Commits - telnet - VIRGO64Queue - KingCobra64 - 25 September 2017
	1122. (FEATURE-DONE) VIRGO64 Queueing Kernel Module Listener - KingCobra64 - 4.13.3 - 6 October 2017
	777. (FEATURE-DONE) KingCobra64 Neuro Electronic Currency transactional cloud move - Perfect Forward - 17 January 2018 - this section is an extended draft on respective topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
	776. (FEATURE) Concurrent Managed Workqueue(CMWQ), VIRGO64 Queueing and KingCobra64 messaging - 12 June 2019 - this section is an extended draft on respective IoT messaging and kernel analytics topics in NeuronRain AstroInfer Design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
	1216. (THEORY and FEATURE) Algorithmic Trading in Fictitious Neuro Cryptocurrency - EventNet Graphical Event Model (GEM) HyperLedger implementation - 14 February 2022 - related to 690,789,790,791,1213,1214,1215 and all sections on Computational Economics - Theory of Value (economic merit), Algorithmic trading, Quantitative Majority Circuit simulation of Demand-Supply, Bounded Width Branching Programs, Algorithmic Game Theory and Mechanism Design, Money Trail, Poverty Alleviation, Graphical Event Models and Causal Event Models, Timeseries analysis, Integer Factorization and Money Changing Program ILP Proof of Work for Neuro Cryptocurrency, Byzantine Fault Tolerance

	References:

